J. Phys. A: Math. Gen. 28 (1995) 1425-1448, Printed in the UK

Normal forms and quasi-integrals for the Hamiltonians of
magnetic bottles

U M Engel, B Stegemerten and P Eckelt

Institut fiir Theoretische Physik I, Universitit Munster, Wilhelm-Klemm-Straie 9,
48149 Minster, Germany

Received 23 May 1994, in final form 15 Scptember 1994

Abstract. The well known Birkhofi-Gustavson normal form theory suffers from the
restraint that the quadratic part of the Hamillonian must be of the harmonic-oscillator
type. In this paper we describe a generalized normal form concept which can be applied to
any polynemial Hamiltonian, thus rendering the above restriction to harmonic osciftators
unnecessary. As in the classical theory, we can derive an asymptotic expression for a second
integral of motion. The truncated formal integral, the quasi-integral, exhibits good conver-
gence properties in regions of phase space where the dynamics is regular, whereas in chaotic
regions the convergence deteriorates. In order to exemplify these findings we apply the
theory to a Hamiltonian describing a particular type of magnetic bottle which cannot be
analysed using the Birkhoff-Gustavson normal form. We calculate the quasi-integrals up
to and inciuding the 14th order and analyse their convergence properties.

1. Intreduction

In this paper we describe a generalization of a very powerful too! for the analysis of
Hamiltonian dynamical systems: the theory of normal forms. Originally developed by
Birkhoff in 1927 [1], who considered only non-resonant systems near an equilibrium
point, the theory was brought into its classical form by Gustavson [2] who showed
how to normalizet even in the presence of resonant frequencies. Later important contri-
butions were made by Bryuno [3]. The Birkhoff-Gustavson normal form (BGNE) has
received considerable attention because of its utility in finding approximate constants
of motion [4-8] and quantizing nonlinear Hamiltonian systems [9-13].

The key idea of the theory is to systematically perform a series of canonical trans-
formations, thus bringing the Hamiltonian inlo a particularly simple form, its ‘normal
form’. In this context simplicity means the possibility to read off an expression for a
second integral of motion directly from the normal form Hamiltonian. More precisely,
for a Hamiltonian H in BGNF the quadratic part of A is proven to be an integral of
motion.

Gustavson considered an autenomous Hamiltonian system of » degrees of freedom
in the vicinity of a stable equilibrium point, such that in lowest-order approximation

T Throughout this paper, the term ‘normalization’ refers to the process of transforming a Hamiltonian into
its normal form. This is not to be confused with, say. the normalization of a vector.
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the Hamiltonian can be wrilten as an n-dimenstonal harmonic oscillator, while the
anharmonic paris of the system are given by a power series of order three and higher
in the coordinates geR" and the momenta peR":

H(g,p)= 3 H/q,p) (la)
I=2
" W, 2 2
Hig,p)= % ?(qv+pv) (1b)

with real frequencies @, > 0 and H; being a homogoneous polynomial of degree / in ¢,
and p,. Gusiavson’s theory necessarily requires the quadratic parl of / to be of the
particular form (16). Only for this special H; he can define his normal form, prove
normalizability and show how to obtain (an asymptotic expression for) a second invari-
ant. In section 2.1 of this paper we will show in detail how this restriction comes about.

Several attemplts have been made to approach the problem from 2 more general
point of view, making it possible Lo normalize not only Hamiltonians of the Gustavson
iype [14-18]. However, until recently there has been no general method that could be
applied to Hamiltonians with an arbitrary H, term. [t is this problem that we will
address and exemplify in the following sections. Similar (and more general} results have
been obtained by Meyer and Hall in [19], though their approach—and especially their
proof of what corresponds to our main theorem (cf section 2.3)—is quite different from
ours. It is our goal to give a more easily readable account of the theory and to demon-
strate in some detail the practical application to a given Hamiltonian and the calculation
of the quasi-integral.

In section 2 we formulate the normalization process in terms of Lie operators and
Lie transformations and use these techniques to develop a generalized approach, suitable
for any H,#£0. Section 3 is dedicated to the application of the generalized normal form
10 a model system Lhat cannol be analysed by means of the Birkhoff-Gustavson theory.
As the model system we have chosen a particular type of magnetic bottle that can be
used as an ion trap in laboratory experiments. Our main result from the normal form
calculations is the derivation of an expression for a formal integral of motion [ up to
and including the 14ih order. The convergence properties of this quasi-integral are
analysed in section 3.2; [ exhibits a surprisingly rich structure and can be used to
reproduce reasonably well the corresponding Poincaré plot.

2. Normal forms

In section 2.1 we give an outline of the BGNF theory using a Lie transformation tech-
nique [20, 21]. Sections 2.2 and 2.3 then show how {0 obtain a generalized normal form
and ils associated formal integral (quasi-integral). Here we draw mainly from the work
of Dragt and Finn [16, 17] and from [22].

2.1. Lie transformations and the Birkhofi—Gustavson normal form

Consider an autonomous Hamillonian system with # degrees of freedom and a
fixed point in the origin. We can always write the Hamiltonian H as a formal power
series in lhe phase-space coordinates g¢,. p., v=1,2,...,n With z=
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(F1, - alusPrse - ,p,,)eRz" we have
H(z)= 3, Hi(2) (2a)

=2
where the H; are homogeneous polynomials of degree /:

H@z)= Y hat"e (2b)

jm| =7

Here %, is the (*;/7")-dimensional vector space of homogeneous polynomials of degree
! in 2n variables, and we employ the multiindex notation

2n
2
me Ngn |m| = Z Mj
J=1
2
M= H P P =T, .. g, € R,
i=1

Note that the dimension of % grows rapidly with / (e.g. for n=2 we have dim{(.%#,) =
680), such that any manipulation of H, for larger values of / will have to be done by
computer algebra rather than ‘by hand’. We denote the space of all formal power series
beginning with degree 2 by %= Pi2: &.

The Lie operator adr adjoint to a power series Fe.¥ is the Poisson bracket of F
with some Ge.Z:

; e so ) "

ad{G)y={G,F}=75 2o 33

i=1

adr is a linear operator on & for all F. The Lie operator adjoint to the quadratic part
of the Hamiltonian and restricted to the subspace %, is of central importance:

me:= adyzi Fon m>2. (4)
Note that 7, maps monomials of degree #1 to monomials of degree m.

The Lie transformation associated with Fe. ¥ is the exponential of adg:
L
explads)= ¥ 7 adr. (5)
=0

Lie transformations are an adequate tool for Hamiltonian normal form theory because
they are canonical [20].
Let # be a Hamiltonian of type (1). H is in Birkhoff-Gustavson normal forin up fo
order m if
4 (Hy=0 for =23 ...,m (6)

H is in Birkhoff-Gustavson normal form if (6) holds for all />2. This definition is
motivated by the fact that A, is an integral of motion if H is in BGNF:

H(H)=0 VI = {H, )=0.

For any given Hamillonian H of type (1) we can proceed Lo the BGNF of I/ in the
following way. With some F,,€.%, determine a new Hamiltonian G=2X;, G, by

G=exp(adr, )(H). (7)
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More explicitly we have
Go+Gy+.. .= Hy+. . .+ H,+adp (H) + €|z ")

where &(|zj"*") stands for terms of order m-+1 and higher. Collecting terms of equal
order we get, using adr, (H) € L im-2:

G=H; for 2<i<m (861!)
G.=H,+ad; (I1.). (8h)

Assuming that H is already in BGNF up to order m—1, equation (8) allows several
important conclusions. First of all, according to (8a) the contributions of order less
than m remain unchanged under the Lie transformation associated to F,,. This shows
that the transformed Hamillonian G is at least in normal form up to order :z—1, too.
Secondly, (85) indicates how to obtain a Hamiltonian G which is in BGNF even up to
order m: From (85) we get

H’H = GJH + 'd}ﬂ(ﬂﬂ)' (9)

This homological equation [23] must be solved for F, and G,, under the additional
condition

Mn(Gm) =0. ( 10)
In other words, G,, must be in the kernel {or nuil space} of .#,:
G.eKer(#),) = {Pe L, 4, (P)=0}.

Thus we have the following iterative process for the normalization of H. For all m=3
we first solve the homological equation for the polynomials G, and F,, and then obtain
the remaining terms G.,, of the new Hamiltonian by evaluating (7). The calculation
of the G, is a tedious but straightforward task that can be left to computer algebra.
The non-trivial key point is solving the homological equation.

Let us assume that the vector space ., can be decomposed into the direct sum of
the kernel and range spaces of «7,,,

&= Ker(.o/,) DIm(.,) (11)

with Im{.¢/,,) = &#,,(%,). Then H, %, can uniquely be split into its kernel and range
components

H,=H,+H, (122)
with

HieKer(s,) (128)

Hielm(s7,). (12¢)
Hence, G, is uniquely determined by the kernel component of H,,:

Gp=H},. (13)
Finally F,, can be obtained by inverting

() = H . {14)

Since there may be several pre-images of If}, under ./, (F, is uniquely determined by
{14) up to any element of the null space of «7,) the normalization procedure is not
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unambiguous. However, we can always achieve unambiguity by additionally requiring
F,, to lie in the range space of .«7,,.
The key picint of the above procedure is the splitiing (11). By means of the canonical
transformation (g, p)—(§. §) with
g=—(q—1ip)
(15)

F=—(p—ig)

w!"‘ %Il"'

Gustavson showed that for a Hamiltonian of type (1) equation (11} holds, since in the
new coordinates §, § lhe corresponding transformed operator .<7,, is diagonal. Since .7,
vields the splitting (11), ., does as well. This proves the applicability of the BGNF
theory to Hamiltonians of the Gustavson type (i): Every such Hamiltonian & can,
by means of a formal canonical transformation, be transformed into the equivalent
Hamiltonian

G=[...~expladg,) o exp(adrjj(A) | (16)

where F,,e.%, and G is in BGNF. The term ‘formal’ indicates that we do not yet consider
the convergence properties of the power series H, F and G.

2.2, The generalized normal form

We now turn to the generic case where .2, cannot be decomposed into the direct sum
of the kernel and range spaces of .o,,. As a trivial example for the way in which this
problem arises. consider a particle with a single degree of freedom (r#=1) which in
lowest-order approximation is ‘free’:

Hyg.p)=3" an
.,,, lakes on the form .o, = p(8/dq), such that we get Ker(.«Z;) =span{p’} and Im(s#3) =
span{p’, . pg*}, and obviously

& # Ker(o43)® Im(.of).

This shows that the normal form considered by Gustavson is not suitable for all types
of I(]g .
We circumvent this problem by using Fredhoint's alternative for %,.:

L= Ket(o) @Im{n). (18)

Here, as wsual, the adjoint operator .o&% is defined via (R].&,8)=
(FER|S)VR, S5e.%,, where (-1} is any suitable scalar product. Below we wil] specify _
a particular scalar product that wiil simplify the following expressions as much as
possible. } )

In accordance with (18) it is natural to define a new normal form. Let I be a
Hamiltonian of type (1a} with an arbirrary quadratic contribution #,. We say that H
is in generalized normal form up to order m if

SF(H)=0 for [=3,4,....m. o {19

H is in generalized normal form if (19) holds for alt /> 3.
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Notice that (19) is not required to hold for /=2—in contrast to the corresponding
definition (6) of the BGNF. The reason being that in general it is impossible 10 normalize
H,, since transforming H: implies changing ./, as well. For generic H, one has lo
expect .5 (H,)=ad},(H,) #0. In Gustavson’s case, however, (6} is always true for n=
2 because the Poisson bracket of H, with itself vanishes.

In order to complete our definition of a normal form we have to specify the explicit
form of the scalar product. For R(2) =X - /i’ €%, and S(z)e.%, we set [24, 22]

_ "

(RIS) (mé,,, g 32,0z, .. 3y,
where the bar denotes complex conjugation. It is easy to see that this product operation
() indeed has the properties of a scalar product. In [17] a somewhat different scalar
product was introduced by choosing a special basis of %, and defining it to be ortho-
normal. These two scaiar products are identical up to a normalization factor. However,
the definition given here paves way for a more general approach and is much easier to
use. This becomes apparenl when trying to derive an explicit expression for «/}. In
[17] this was only achieved for a very restricted case, namely the so-called ‘mirror
machine’ or ‘magnetic bottle Hamiltonians’. See section 3 for a discussion of this class
of systems.

We first wrile .+, in yet another form. Linearizing Hamilton’s equations we obtain
the Hamiltonian matrix L=JHess(H;), with the 2n-dimensional symplectic matrix

0 id,
J=
(e %)

and the Hessian Hess(1;). Thus we have
,Pﬂn(‘)=Dz(')'LZ (2')

with the abbreviation a - =32, ab,; for a, 5eC?. In order to find &% we rewrite its
definition (£ ER]|S)=(R]|,S} as

)S(z) (20)

(SERIS)= 5 (REDISrmo

where we have used the relation (R > M* 8)Y=(R|S M) which holds for any linear
mapping M on C?. Evaluating the time derivalive yields (FZR|S)=
(D (R) - L*37]§), and we obtain .7} as

(L )=DA) L'z (22)

This expression is identical with (21) afier conjugating and transposing L.

In the form (22) &/} can easily be used for determining the splilting (18} of .&5,.
For the example (17) considered in the beginning of this section we obtain
% =g(3/8p) and therefore Ker(s7¥)=span{g’}.

The method for transforming a given Hamiltonian into its generalized normal form
is exactly the same as the one described in the previous section; one only has to replace
(125) by

Hl,eKer(«¥). (23)

Since the splitting (18) holds for any /1>, we have proven that any Hamiltonian cun be
normealized according to the generalized definition (19).



Normal forms and quasi-integrals of magnetic bottles 1431

Note that for a Hamiltonian of Gustavson’s type (1) the two definitions of normal
form coincide, because in this case .o/ %=—/,,. So if H is in BGNF (up to order i) it
is in generalized normal form (up to order m2), too. The utility of the normal form will
become evident in the next section.

2.3, Quasi-integrals of motion

By construction, for a Hamiltonian in BGNF H, is 2 formal integral of motion (see
section 2.1). We now show how to find an analogous formal integral for a Hamiltonian
in generalized normal form. Our resulis are similar {o the findings of Meyer and Hall
{19], but the proof differs in some details. We have tried to make the exposition as
transparent as possible by focusing on just those aspects that are essential for the
reasoning.

We write A, as

Hyz)=1z- J 'Lz , (24)

and decompose L by means of the Jordan-Cheuvalley decomposition [25] into its diagona-
lizable and nilpotent parts D and N:

L=D+N. (25)

Existence and uniqueness of this decomposition are assured by the Jordan normal
form theorem for matrices. Define the diagonalizable component I(z) and the nilpotent
component K(z) of Ho(z) by

IZ)=3%z-J "' Dz
K(z)=3z-J ' Nz

such that Hy(z)=1(z) + K(z). We are now in the position to prove the main theorem:

(26)

Theorem: For a Hamiltonian H(z) in generalized normal form the diagonalizable part
I(z) of Hifz) is a formal integral of motion.

For the proof we must show that the Poisson bracket of 7 with A,, vanishes for ail
m=2. We start with m=2 and then proceed to the case m>2.
By virtue of Jacobi's identity for the Poisson bracket we have

ad;HzJ] =ad;ad;;2—ad”2 B.df. (27)

This expression is zero if ady, and ad; commulte. In order to show that the lalier is the
case we first remark that the matrices L, D and N are infinitesimally symplectic [26],
i.e. they salisfy M'J4-JM =0 (for M=L, D, N'). Direct computation shows that for an
infinitesimally symplectic matrix M the Lie operator adjoint to the quadratic polynomial
P(z)=1z- J™'Mz can be written as adp{-)=D,(+)+ Mz. Thus we have for the Lie
operators & ,, and 4, adjoint to J and K:

Do Yi=adi(-)=Dy(-) - Dz
(- ) =adg(-)=D;(-) - Nz
It i5 one of the key advantages of this formulation of the theory that we can characterize

all the imporlant operators .7, @,, and .4,, which operale in a space of the high
dimension (3:7"') by matrices of the considerably smaller dimension 2x: L, D and N.

(28)
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We now show that for two commuting matrices My, M, the corresponding Lie
operators adp,, adp, (defined as above) commute as well:

adp, adp,(- )= Du(D:(-) - Maz)Mz

b 62 " » 3
=X ( WMz (M) + T, — (- W MM 2),
=1 az,u a&v - p=1 62,,
=adpz adp,('). (29)
Because LD— DI=0, this implies that the rlghl,-hand side of (27) is zero, and thus

Hy, i}=0.
{ For} m>2 we proceed in the fol]owmg way: We show that diagonalizability and
nilpotence of the matrices D and N carry over to the corresponding Lie operators 2,,
and .4;,; these properties then imply that the null spaces of @, and 2% coincide and
that 2%11,,=0, which in turn means {H,., 1} =2 ,,H,,=0.
Consider a unitary matrix T that transforms D into the diagonal matrix D=7TDT ™",
Inserting twice the identity 77’ T into the expression for 3, we get

@m(' )=Dz( ') - TDT_! TZ.
With =Tz, and denoting 2,, in the new coordinates Z by &,,, we obtain
G- )=Ds(-)- Dz (30)

Application of this transformed operator to any of the basis monomials Z/ of .%,, yields,
because D is diagonal, an eigenvalue equation with the eigenfunction #/ and a certain
eigenvalue p;—thus diagonalizability of £, is shown.

Now consider any Re.%,. R(e¥Z) is a polynomial in 7 of degree less than or equal
to mf{np— 1), since by nilpotence there is some noeN such that N™=0. This polynomial
is related to A7, in ihe following way:

%‘R (emz) [DAR) - N2ty = Arul R)| ot

Iterating this expression and evaluating for r=0 we get

mrgy

d tmn,,

A (RY=——R(e"2)|,20=0 (31)

which implies nilpotence of .4,,, because (31) holds for all R.
Identity of the null spaces of &,, and 2y, is a direct implication of diagonalizability:
Application of the diagonalized operator &, (cf (30)} vields

7 2%7")=(2.712") = i (2*|2") = & 5p..
So the eigenspaces corresponding to the eigenvalue 0 of D) and 2, are identical.

Finally, we determine how @ acts on polynomials in .%,. Notice that 4% is
nilpotent, because its adjoint is. With o} = 2%+ 47 we obtain for any H,. € %,,:

- (l/{,ﬂ:::])nmof];"
= ('ﬁn*? - @::)m"uHm
g
= z (mﬂo) ( g::: nmu"f(ﬂ’”)me

o\
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because &% and £ commute (since the corresponding matrices L§ and D§ commute;
of (29)). () H,.is zero for m>3 and / 2 1 because 71 is in generalized normal form.
From this it follows for H,(Z)=X,j, -/ % that

0=(FEY"H,= T k@Y

lil=m
- here, for the sake of notational convenience, we have again turned to the coordinates
Z as defined above. Linear independence of the basis monomials Z* then gives the result
f; =0 and thus

FEH,= ¥ hgi=0

1jl=m

and we have proven the theorem.

3. Normalizing a magnetic bottle

The remaining part of this paper is dedicated to the application of the generalized
normal form theory to a class of systems that is not accessible via Gustavson’s method.

3.1. The model system

‘We consider a ‘magnetic bottle’ which is made up of a homogeneous magnetic (dipole)
field with a superimposed octupole contribution. In cylindrical coordinates we have:

B(p, 2):= By e.+ By[—pz e, +(Z*~3p%) e.]. (32)

A configuration of this kind was used, for example, for very accurate measurements of
the g-factor of the electron [27]. Figure 1 shows the field lines of B{p, z) and motivates
the term ‘bottle’; At least in the vicinity of the z-axis, the motion of a charged particle
in this type of magnetic ficld consists of a cyclotron oscillation about the field fines,
superimposed to a vertical oscillation along these lines. Since the field lines converge
towards the z-axis for larger values of |z| the particle will be reflected at some stage (if
it does not move exactfy on the z-axis all the time), and the resulting motion is bound.
So B indeed functions as a bottle for charged particles, (This analysis can easily be
made rigorous. } ’

We restrict ourselves to the case p,=0, such that a particle in the bottle does not
encircle the z-axis but continually passes through it. Afier suitable scaling we arrive
{(for ByB,>0) at the Hamillonian

H(p, z,pp. py=2(ph+pD) + V(p, 2) ' (330)
with the two-dimensional potential
V(p,2)=3p"+3p°2" — 5p*+ 3%z = 1ep"? + 5P’ (33b)

H describes a system with two degrees of freedom, one of which (p) corresponds, in
lowest-order approximation, to a harmonicaily bound motion while the dynamics along
the z-axis is free in the same approximation. Note that this Hamiltonian cannot be
dealt with by the BGNF theory.
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4

Figure 1. Magnetic field lines of the magnetic bottle as described by {32) with By= By =1,
The full three-dimensional picture is obtained by rotation about the z-axis.

In what follows, we do not restrict p to positive values but allow for negative values
as well. This makes it possible to treat p and z simply as cartesian coordinates in two
dimensions. An example for the dynamics of our model system, obtained by numerical
integration, is shown in figure 2. Similarly, we have numerically calculated Poincaré

Figure 2. Typical dynamics in the magnetic bottle at the energy E=0.5. The dotted lines
show the boundary of the accessible region of the configuration space, defined by the
condition V(p, )< E.
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plots for several energies E. To this end we have defined Poincaré surfaces of section
¥ by setting p=0,

ZE = {(O: Z:PpsP:)TE R4lpP= A 2E—p‘2" |P:| < ¥ ZE}

and obtained the corresponding Poincaré plot by recording the points (z, p,) where the
trajectory passes through Zg with positive momentum p, (see figure 3). The system
exhibits a typical kaM scenario when the control parameter £ is increased; at low
energies the system is nearly integrable, whereas at higher energies invariant tori break
up and the chaotic region of phase space becomes increasingly large.

It is important to realize that for this system a global second integral of motion
{the first being the Hamiltonian itself) cannot exist, because the existence of such an
integral would render the system integrable. This would be incompatible with the non-
integrability demonstrated by the Poincaré plots. Still, the preceding section shows how
to construct 2 formal invariant. The resolution of this ostensible contradiction is that
one expects the formal integral to approximate the local exact integrals of motion in
the regular regime (where the KAM fori dominate), whereas in the stochastic regions
the formal integral is expected to diverge. See [28] for a discussion of these convergence
properties.

Rather than discussing just the Hamiltonian (33) we will study the normalization
process for the more general class of magnetic bottle Hamiltonians which are defined
by their quadratic contribution:

! " @,

H@)= T dhat T S+, (34)
v= v=i+i

With /=1, n=2, z;=z, zz=p and @;= 1 we can write the /, of (33} in the form (34).

Transformation of the corresponding Hamiltonian matrix L=J/Hess(H,) inlo

Jordan normal form yields
0 1y, o —in .
10 O,co!+]:---7imn= /1IN SO [ P

L=diag ((g é)-,. .

[ times (33)

Obviously the frequencies ®, mark the diagonalizable component of £ (and therefore
of L), such that we obtlain

n

. @, i

Ie(Zy= Y —(z2h+Zwy) (36)
v={+] 2 '

which is a formal integral of motion if H(z) is in generalized normal form. This result

was already stated in [17], but here it could be derived with much more ease of computa-

tion. For the specific case of {33) we have

INF(JO’ ZstnP:)=%(pz+F.«zv)- ‘ (37)

The stage is set for application of the normalization process as described in section 2.
In the appendix we explain in some detail how the efforl needed to normalize magnetic
boitle Hamiltonians can be reduced considerably. As the result of these conditions we

have obtained the formal integral of the magnetic bottle (33) up to and including
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Figure 3. Poincaré plots of the magnetic bottle at the energy E as described in the text,

" The boundary of the surface of sectiof, defined by {p,| = vZE, shows up as horizontal lines,
(a) E=0.01, () E=0.2, {¢) E=0.5.
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Pz

Figure 3. (coﬁtinued)

the 14th order. The first few terms are

I(p, 2, po, P:) =o.spf,+0.5p2+0.046875p;+0.125p§pf,
+0.093750%p%2—0.125pp2 — 0.078125p* +0.5zpp.p,, (38)
—0.252°p5+0. 25"2p2+ @(|z]°).

A complete list of all the 415 summands up to order 14 is available on request from
the authors. Note that 7{z) contains only monomials of even order, because the same
is true for the original Hamiltonian (33).

1t is important to note the difference between the representations {37) and (38) of
the integral of motion. The first formula applies if the Hamiltonian is already in gen-
eralized normal form, while the second holds for the non-normalized Hamiltonian (33)
in the original coordinates and is obtained from (37) by inverting the normalizing Lie
transformations.

To our knowledge, there is only one other example in the literature where normaliza-
tion for a, full Hamiltonian has been carried out up to such a high order |28, 25],
(Discrete mappings, on the other hand, have been normalized up to order 100 and
beyond; ¢f {30].) One has to realize, though, that the Hénon-Heiles Hamiltonian consid-
ered in [28, 29] is of the Gustavson type (1), thus rendering &7, diagonal. As explained
in the appendix, for magnetic bottle Hamiltonians .«/, is not diagonal, which makes
the determination of the splitting (12) and the inversion of (14) a much more difficult
task.
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3.2. Local and global analysis of the quasi-integral

The characteristic property of an integral of motion is its constancy along trajectories
in phase space. As mentioned earlier, one cannot expect this behaviour for a formal
integral of a non-integrable system like the magnetic bottle discussed here. But in line
with reference [28] (and many others} we still expect convergence of /(z) in regular
regions of phase space.

Let us define the quasi-integral 7°”(z) of order i as that approximation to /(z)
that contains only monomials of degree m and less:

I™(2y=1I(2)+ e(z™").

In order to check the convergence of /™ as a function of mz, we choose a point seSy

of the Poincaré surface of section and evaluate the quasi-integral for z(¢) = ®@(s) with
@,(s) being the phase flow of the system (33):

](m)(t; s) =I(’")((I),(S)).

Figure 4 demonstrates that it depends both on the energy (tantamount to the ‘degree
of chaoticity’ of the system) and on the starting point s whether convergence of the
quasi-integral 17(¢; s) is observed or not. At the low energy E=0.01 most s yield fast
convergence (figure 4(a)). At the energy E=0.2 divergence occurs almost everywhere,
but it is typical that for the first few values of m one has ‘pseudo-convergence’ before
the expected divergence takes over (figure 4(5)).

The above analysis is Jocal in the sense that one has to specify a single point s for
which 7%(t; s) is evaluated. We now turn to a kind of global analysis and show how
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Figure 4. The quasi-integral 1*”(; s) of the magnetic bottle (33) plotted as a function of
time for several different values of m. () £=0.01, 5=(0, 0.05); (& E=0.2, s=(0, 0.3).
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to obtain a qualitative picture of the convergence properties of /(z) in a larger region
of phase space.

In order to have a (though somewhat strong) criterion for convergence we say that
I¥(¢; 8) is convergent at s if

| 17%2(5) — 1¥(s)| <| /™ s)— I“"D(s)| - for m=4,6,8,10,12. (39

Here ["(s)=limzr...(1/T) j';" I™)(¢t; s) is the time average of the quasi-integral for a
trajectory starting at s. it would be highly desirable to extend the definition to higher
orders m of the quasi-integral, but this is limited by the great computational effort
needed for this task. Qur definition is similar to the one suggested in [28], but we find
it appropriate to calculate averages over whole trajectories rather than considering Just
the behaviour at the point s.

The next step is to define a convergence function C(s) by setting

c(s)=={(1) i T(s) is {““Vﬂgﬁm

. in the sense of (39). (40)
divergent

Though being quite coarse-grained (since it takes into account only the first few approxi-
mants of the formal integral) C(s) allows to estimate the convergence properties reason-
ably well.
In figure 5 we present a convergence plot for the magnetic boitle (33) at the energy
E=0.2. This picture should be compared with figure 3{(5). On a 200 x 200 grid we have
“marked with black all points where C(s)= 1 indicates convergence of the quasi-integral.

0‘6 -I T i T T T T T I_
04} 1
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02t - .
- ,-
04t ) " -
0.6} ]
2 15 -1 05 0 05 10 15 2
Z

Figure 5. Convergence plot for the magnetic bottle at the energy £=0.2. The same Poincaré
surface is shown as in figure 3(5). On a 200 x 200 grid the convergence function C(s) has
been calculated and the points with C(s)=1 have been marked black.
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It is interesting to see that although the condition (39) is quite strong there are large
convergent regions in £g. Many of the details of the Poincaré plot 3(b) show up in the
convergence plot as well. As expected, convergence is most frequent in the centre of
the picture. Furthermore, the fiyperbolic periodic points of the two dominant Birkhoff
chains (of period four and six, respectively) in figure 3(b) are clearly represented in
figure 5 by clouds of black marks. This is surprising, because in the neighbourhoods
of these hyperbolic points one would expect distinct divergent behaviour, caused by
the chaotic dynamics in a heteroclinic tangle scenario.

As an aside we remark that the convergence of the quasi-integral for the magnetic
bottle considered here is worse than the convergence for the Hénon-Heiles system
discussed in [28]. This seems to be due to the fact that for the latter system the accessible
region of phase space is bounded, whereas for the magnetic bottle the dynamical region
extends infinitely along the z-axis. |

In order to get refined information about the convergence properties of the /°"(z)
as a function of m we now modify the rule for marking points in the convergence plot.
As a measure for the deviation of I“(z) from its mean value we calculate the standard
deviation

T=sen

1 T —_—
O_(mJ(S) — lim }j (1 (m}(t; s)— I(Jn](s-})z dr
0

and for normalization (and for comparability of results that belong to different s and
thus to different mean values of the quasi-integral) we divide by |1"7(s)|:

{nr)
m G S
T]( )(S) =—H(T——n-](_)
| 77(s)l
This quantity will play a key role in the following. We can take
7(s) < """ 3(s) for m=4,6.8,..., 14 (41

as new necessary criterion for convergence. This criterion is similar, but not equal to
(39). With (41) one can say more about the divergent quasi-integrals: For each of them
there is an i1(s) such that no(s)< n“"(s) for all m #m,. A convergent (in the sense
of (41)) quasi-integral is characterized by m(s) =14 (the highest order of approxima-
tion). If divergence occurs from the beginning, i.e. if the deviation of the quasi-integral
from its mean value grows for all available m, then we have ing(s) =2. Intermediate
values are possible as well. A typical situation {(with #1p=8) is shown in figure 6.

0.1 1
0.03} ©
n™)(s) o o
0.01+ o , © -
0.003F . . . . .4
2 4 6 8 10 12 14
e

Figure 6. A typical graph of (s}, A region of pseudo-convergence and a divergent region
are separated by m(s}=8. The parameters for this picture are £=0.2, s=(0, 0.7).
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Again we can mark the points of the surface of section of the magnetic bottle, this
time according to the value of m(s). The result can be seen in figure 7, which is to be
compared with the Poincaré plots of figure 3. The dark regions correspond o larger
values of m(s), thus indicating—cum grano salis—convergence, while points in the light
grey or white areas have small n1y(s), which means that ”"(s) increases quite from the
beginning. The Poincaré plot 3(a) at a very low energy shows regular motion, and

0.1
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P 0r

-0.05

-0.1

(@)

Figure 7. my(s)-plots for the magnetic bottle at the samc energies as in figure 3. Again the
Poincaré surface is shown as a 200 x 200 grid of points which are shaded, this time according
to their respective values of my(s), as shown in the key. (@) £=0.01, (b) E=0.2, (¢) E=
0.5.
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figure 7(a) accordingly indicates convergence in large regions of . The light grey
spots in the centre of the figure must not be mistaken as indicating divergent behaviour.
On the contrary, convergence is excellent around the origin, such that very small values
of §""(s) are being compared, and values of n(s) larger than two are due to the
limited accuracy of the numerical calculation and round-off. Convergence deteriorates
with increasing £ (and thus increasing chaoticity) as the comparison of figures 3(h), (¢)
and 7(b), (c) shows. In particular, figure 7(b) reproduces the content of the Kaluza-
Robnik-type figure 5 very well and even adds much more information about the
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convergent regions. We conclude that the mq(s)-plots are considerably better suited
than the C(s)-plots for the analysis of the convergence properties of the quasi-integral.

It is important to keep in mind that we are using quite a special definition of
‘convergence’ here. Whilst this is useful for the present discussion, comparison with
rigorous theoretical results about the divergence mechanism [31. 32] is delicate. Gen-
erally, (pseudo-) convergence (in the usual sense) is expected within a disc, which is
compatible with figures 5 and 7(«a). But figure 7(h) seems to indicate that convergence
has spread into the region between the island chains of period four and six, at variance
to the theoretical prediction. The reason being that mqg(s)=2 or 4 reflects only the
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behaviour for the first few orders 1 and is no direct indicator for true convergence. So
the values of #1y(s) can be taken only as a vague phenomenological hint towards true
convergence or divergence. .

Figure 7{b) already reproduces reasonably well the features of the corresponding
Poincaré plot, but only in regions not too far away from the origin. In an aitempt to
enlarge the region that is accessible for the analysis we make the following exponential
ansaiz for the normalized standard deviations as functions of s1:

n(nrJ(S) za(s) ea(s]m (42)

with a(s) and a(s) to be determined. Here, one is especiaily inlerested in the speed of
convergence/divergence that is expressed by g(s). For a justification of the approxima-
tion (42), we have considered some typical graphs of 1'™(s) in figure 8 and determined
(with a least-squares method) the corresponding a(s) and a(s). As can be concluded
from figures 8(a) and (b), often the approximation (42) seems to work reasonably well.
Figure 8(c)} shows a case where a transition from convergence to divergence occurs.
Taking into account situations like this, we have decided to rely only on the n"(s)

10t - -
2 4 6 3 10 12 14
m
(C) 0.1 6‘ T T T T T T
0.03}
7™(s)  0.01F
0.003 |
0001 =% % 10 12 12
m

Figure 8. Normalized standard deviations 7''(s) (marked by ) and their approximants

a(s) e™ (solid lines) for the magnetic botile, The paramelers a(s) and e(s) have been
computed using the data for nr=8, 10, 12, 14. (a) £=0.01, s=(0.81, 0.0553}; (b) E=0.2;
s=(1.69,0.597); (¢) £=0.2; 5s=(0,0.3).
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with 7m=8, 10, 12, 14 for the calculation of a(s), because we are mainly interested in
the convergence properties for larger values of m. With this convention even a behaviour
such as that in figure 8(c) can be handled reasonably.

It is one of the advantages of the a(s)-method that one obtains a conlinuous spec-
trum of values of «(s), as opposed to the discrete spectra of C(s) and n(s). This
becomes apparent in figure 9, where we show again %, ,, now shaded according to a(s).
The lighter the grey, the larger a(s) and thus the faster the divergence of the quasi-
integral. The central portion of the picture is similar to the one of figure 7(5), but now
the outer regions show some structure, too. Comparing with the corresponding Poincaré
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Figure 9. a(s)-plot for the magnetic bottle at the energy £=0.2. The 200 x 200 grid points
are shaded according to their respective values of a(s). The calculation of these values is
based on n'"'(s) for m=8, 10, 12, 14.
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plot (figure 3(&)) one sees that the a(s)-plot clearly marks the third and fourth largest
Birkhoff chains as well. Even more structure can be detected by more careful analysis
of the picture. So the ansatz (42) seems to be jusiified.

4. Concluding remarks

Let us briefly summarize our main results. We have described a generalized version of
the powerful tool of normal form theory for Hamiitonian systems. Using this gen-
eralized technique, it is now possible to analyze any Hamiltonian that is given as a
power series in phase-space coordinates. Even if the Hamiltonian is not given in the
form of a power series one can always expand H into its Taylor series and normalize
the truncated expansion. Thus a large variety of Hamiltonian systems can be analysed
in a unified way.

The most important result of a normalization is the derivation of a formal integral
of motion that, in general, is different from (and often independent of) the already
known integral K. That means that one can obtain substantial new information about
the system by normalization. Convergence of this formal integral of motion cannot be
taken for granted. Addressing this problem, we have suggested some new methods for
analysing the convergence properties of the truncated formal integral. We have found
thal these quasi-integrals are of physical interest, since their convergence properties
reflect many of the characteristics of the corresponding Poincaré plots.

It is certainly necessary to carry the analysis of the convergence of the quasi-integrals
further. Many authors [10, 33, 29] have suggested studying the poles of Padé approxi-
mations to the quasi-integrals. The location and the number of poles of these approxim-
ants then allow us to gauge the properties of /.

Appendix. Details of the normalization process for a magnetic bottle

In this appendix we discuss some details of the transformation of a Hamiltonian with
a quadratic part (34} into generalized normal form. More specificaily, we show how to
simplify the Lie operator

.Cf/,,,(')'—"[z zu-!-va%(')'i' i wv(zn-ivaa ( &y g ())]
v=] v e

v=i+] 2y azrz-i-b

m

which is adjoint to this particular f15.
The unitary matrix that by a similarily transformation puts the Hamillonian matrix
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into the Jordan normal form D= MLM™ of (35) is
s
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SN
with e, being the canonical base vectors of R*. This formula can easily be derived
by performing a certain permutation of the rows and columns first, followed by a

transformation similar to (15).
In the new coordinates £= Mz the Lie operator takes onthe form

(—ie; +e3,)

! n
&Zn=|:z Ezv ,,,a + Z imv(fi+v'~i_fr:+v___,§"—):| .
v=1 22—t v=lki le- OZpiey =,
This representation of the Lie operator is advantageous, because here we have collected
as many non-zero entries (of the matrix representation) of %, on the diagonal as
possible. Only the first sum vields an off-diagonal contribution.

We have not yet made any assumptions about the ordering of the monomials # in
the basis of .%,. If one chooses the lexicagraphical ordering [2] of the basis monomials,
then the matrix representation of @, becomes an upper diagonal matrix for all i, and
all the manipulations of o, that are necessary in the course of the normalization
procedure (solving linear equations, inverting ., ...) become easier and consume
much less computing time.

In the case /=1 il is possible to achieve even further simplification by an appropriate
ordering of the basis monomials of &,,. One can introduce the so-called magnetic bottle
ordering of monomials which resulls in A being bi-diagonal.
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