

Figure 1.a. The attractor of the Lorenz system ($\sigma=10, \beta=\frac{8}{3}, \rho=28$), projected onto the xy-plane.

Figure 1.b. x(t), the one-dimensional data stream obtained from the integration of eq. (12). From this data one gets the time series $x(i\tau)$, $i=0,1,2,\ldots$

Figure 1.c. A phase portrait of the Lorenz system, constructed by the method of delays.

Figure 2. Example of a manifold M_1 which is embedded in the manifold M_2 via the diffeomorphism $\Phi: M_1 \to M_2$.

Figure 3. Two dynamical systems with the same qualitative dynamics, connected via the diffeomorphism $\Phi: M \to \mathbf{R}^{2m+1}$.

Figure 4. Embedding process after Packard et al. and Takens.

Figure 5. (a,b) Projections of the Rössler attractor onto the xy- and xz-planes, respectively. (c) Time series $x(i\Delta), i=0,1,2,\ldots$, obtained by numerical integration of the Rössler system. (d,e,f) Results of the method of delays, with $\tau=10\Delta,\,50\Delta,\,140\Delta$, respectively.

Figure 5. (g,h) Results of the method of delays, with $\tau=235\Delta,$ $2000\Delta,$ respectively.

Figure 6. Illustration of an embedding dimension n which is too small. The reconstructed picture of the attractor is shown schematically in n- and (n+1)-dimensional embedding space.

Figure 7. Example for a band-limited power spectrum which allows to determine the band-limit frequency ω^* .